2011普通高校招生新课标全国统考大纲:文数
困难的信心,体现锲而不舍的精神.
4.考查要求 数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构. (1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度. (2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度. (3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能. 对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化;对运算求解能力的考查主要是算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力。 (4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点并结合实践经验,使数学应用问题的难度符合考生的水平. (5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题. 数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求. 二、考试范围与要求 本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“做标系与参数方程”、“不等式选讲”等3个专题. (一)必考内容与要求 1.集合 (1)集合的含义与表示 ① 了解集合的含义、元素与集合的属于关系. ② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 ① 理解集合之间包含与相等的含义,能识别给定集合的子集. ② 在具体情境中,了解全集与空集的含义. (3)集合的基本运算 ① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. ② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. ③ 能使用韦恩(Venn)图表达集合的关系及运算. 2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数) (1)函数 ① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. ② 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数. ③ 了解简单的分段函数,并能简单应用. ④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. ⑤ 会运用函数图像理解和研究函数的性质. (2)指数函数 ① 了解指数函数模型的实际背景. ② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. ③ 理解指数函数的概念,并理解指数函数的单调性掌握指数函数图像通过的特殊点. ④ 知道指数函数是一类重要的函数模型. (3)对数函数 ① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. ② 理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点. ③ 知道对数函数是一类重要的函数模型; ④ 了解指数函数与对数函数互为反函数(a>0,且a≠1). (4)幂函数 ① 了解幂函数的概念. ② 结合函数的图像,了解它们的变化情况. (5)函数与方程 ① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数. ② 根据具体函数的图像,能够用二分法求相应方程的近似解. (6)函数模型及其应用 ① 了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义. ② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用. 3.立体几何初步 (1)空间几何体 ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (2)点、直线、平面之间的位置关系 ① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据 |